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ABSTRACT

This paper presents a novel saliency-modulated sparse rep-
resentation algorithm for image super resolution. In images,
regions salient to human eyes appear to be more organized
and structured. This property is utilized in both the dictio-
nary learning and the sparse coding process to capture more
structural details for the reconstructed image. Apart from a
general dictionary, example patches from the salient regions
are extracted to train a salient dictionary. We also incorporate
context-aware sparse decomposition to model dependencies
between dictionary atoms of adjacent patches, especially in
the salient regions. Experiments show the proposed method
outperforms state-of-the-art methods with the highest PSNR
gain. Subjective results demonstrate the proposed method re-
duces artifacts and preserves more details.

Index Terms— Super resolution, sparse representation,
saliency, context-aware

1. INTRODUCTION

Sparse representation of signals on over-complete dictionar-
ies is a rapidly evolving field. The basic model suggests that
natural signals can be compactly expressed as a linear com-
bination of prespecified atom signals, where the linear coef-
ficients are sparse (i.e., most of them zeros). Formally, let
x ∈ Rn be a column signal, and D ∈ Rn×m be a dictionary,
the sparsity assumption is described by the following sparse
approximation problem:

x ≈ Dγ, s.t.∥γ∥0 ≤ ϵ. (1)

where γ is the sparse representation of x, ϵ is a predefined
threshold. The l0-norm ∥ · ∥0 counts the nonzero entries of a
vector, claiming the sparsity of x. Though l0-norm optimiza-
tion is a NP-hard problem, there are various ways to solve
it [1, 2].

Sparse representation-based super-resolution (SR) tech-
niques are extensively studied in recent years. They attempt
to capture the co-occurrence prior between low-resolution
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(LR) and high-resolution (HR) image patches. Yang et al. [3]
used a coupled dictionary learning model for image super-
resolution. They assumed that there exist coupled dictionaries
of HR and LR images, which have the same sparse represen-
tation for each pair of HR and LR patches. After learning the
coupled dictionary pair, the HR patch is reconstructed on HR
dictionary with sparse coefficients coded by LR image patch
over the LR dictionary. In this typical framework of sparse
representation-based SR method, the dictionary is determined
on a general training set and the prior model to constrain the
restoration problem is the sparsity of each local patch.

Many dictionary learning methods aim at learning a uni-
versal dictionary on a general training set to represent various
image structures [4]. However, for complex natural images,
sparse decomposition over a highly redundant dictionary is
potentially unstable and tends to generate visual artifacts. In
other words, universal dictionaries are not adaptive to local
image properties. Therefore, it is reasonable to improve the
dictionary learning model for more adaptive dictionaries. For-
tunately, the rapid development of social network provides
us with large amount of similar images describing the same
scene. This means similar images of the LR image can be
gathered to train an adaptive dictionary.

Moreover, inspired by the work in [5], we consider intro-
ducing the saliency property of images to further improve the
adaptiveness of the dictionary. Saliency refers to elements of
a visual scene that are likely to attract the attention of human
observers [6]. More generally, regions salient to human eyes
tend to be highly structured because human visual system is
attracted to organized structures for the ease of recognition.
Sadaka et al. also suggested that due to human visual at-
tention, attended regions are processed at high visual acuity,
hence details in these regions should be reconstructed with
higher accuracy than those in non-attended areas. Thus when
training dictionaries, we specially use samples from salient
regions. The fact that salient regions of similar images prob-
ably have similar structures would enhance the adaptiveness
and reconstruction ability of dictionaries. When reconstruct-
ing the image, the above trained dictionary can be applied to
the salient regions in the LR image to generate more visually
pleasant results while reducing the overall computation cost.

As to the prior model to recover the HR image, conven-
tional sparse recovery algorithms [7] imposed the sparsity
constraint of each independent patches. The local smooth-



Fig. 1. Flow diagram of the proposed algorithm.

ness is constrained merely by averaging on overlapped re-
gions, which is weak to regularize the image SR problem
when the observed LR image loses partial structure informa-
tion. Correlations between the structural information of the
whole patches (not merely the overlapped regions) should be
investigated. Thus context-aware sparse decomposition is in-
troduced, which refers to sparsely coding the patches by em-
ploying the dependencies between the dictionary atoms used
to decompose the patches. Better still, the highly structured
property of salient regions makes it a fairly proper scenario to
apply context-aware sparse coding.

In this paper, considering the aforementioned two issues,
we present a novel saliency-modulated context-aware sparse
decomposition method for image super resolution. Similar
images are obtained from the Internet by content-based im-
age retrieval to build a specialized database. Then example
patches from the salient regions of the database are extracted
to train a salient dictionary, which is especially adaptive to
local structures. In addition, to better explore the correlations
among patches, we apply context-aware sparse decomposi-
tion to salient regions based on the observation that salient
regions tend to be more structured.

The rest of this paper is organized as follows: Section 2
describes each part of the proposed algorithm in detail. Ex-
perimental results are shown in Section 3. Finally, concluding
remarks are given in Section 4.

2. SALIENCY-MODULATED CONTEXT-AWARE
SPARSE DECOMPOSITION

2.1. Overview

The sparse representation-based SR problem can be formu-
lated as given a low-resolution image, recovering its high-
resolution version via the learned coupled dictionaries. X =
{x1, x2, ..., xt} is a set of training examples (all of them have
been reformed to column signals), then the conventional dic-
tionary learning process aims at minimizing the following for-
mulation [3]:

D = argmin
D,Γ

∥X −DΓ∥22 + λ∥Γ∥0, s.t.∥Di∥22 ≤ 1, (2)

where ∥Γ∥0 is the sparsity constraint and ∥X −DΓ∥22 is the
data fidelity constraint. Di (i = 1, 2, ...,K) represents the
atoms of the dictionary D. This extensively-studied l0-norm
minimization problem can be approximated by greedy algo-
rithms or convex relaxation-based algorithms. A coupled dic-
tionary which includes both the LR and HR dictionary can be
trained in the similar way. Once the dictionary is settled, the
LR image patch x can be sparsely coded as follows:

γ̂ = argmin
γ

∥X −Dγ∥22 + λ∥γ∥0. (3)

And the problem of recovering the HR patch ŷ turns into mul-
tiplying the sparse coefficients γ with the HR dictionary.

Conventional methods randomly choose patches to build
training set X , which results in a general dictionary. But for a
particular LR image, this dictionary is too general to express
certain structural details. We improve the dictionary learning
model from two levels to enhance the adaptiveness of learned
dictionaries. First, similar images of the LR image are gath-
ered to be candidate training set. Then, we go on to narrow it
down to salient parts of images in the training set. The pro-
posed dictionary training procedure is based on two impor-
tant facts: 1) Similar images contain more useful information
than general images that will help compensate for the LR im-
age. 2) Salient regions are highly structured, signals extracted
from the salient regions should be closely correlated. So the
learned dictionary is especially adaptive to the structure of
the salient regions. Since attended salient regions need to be
treated with more acuity from the human visual perspective,
we apply salient dictionaries only to salient regions. For the
less attended non-salient regions, a general dictionary will do.

In the sparse coding phase shown in eq.(3), sparsity of
each independent patches is used to regularize the optimiza-
tion problem. In other words, each patch is sparsely coded
independently and overlapped regions are averaged to keep
smoothness along boundaries. However, neighboring patches
are closely correlated. They may tend to have similar sparse
codes. Especially for patches in salient regions, the highly
structured property makes them more dependent on each
other. Thus we introduce the context-aware sparse decom-
position to employ the dependencies between the dictionary
atoms used to decompose the patches. Such improvement on



the prior model imposes more constraints on the restoration
problem, which will help preserve more structural details.

Based on the characteristics of saliency, the proposed al-
gorithm generates adaptive dictionaries and also sparsely de-
compose patches in a correlated way. A set of similar images
to the LR image are collected in Ψ, and then comes the salient
database Ω. Obviously, Ω ⊆ Ψ. Let XΨ be a set of patches
which are extracted from the whole images in the database,
and XΩ be the patches extracted from the salient regions in
the images of the database. Then the general dictionary, {Dl,
Dh}, and the saliency-modulated dictionary, {D′

l , D
′

h}, are
obtained by training on XΨ and XΩ respectively using the
method described in Sec.2.1. ΓΨ and ΓΩ are sparse codes for
non-salient and salient regions, as Fig.1 illustrates. Note that,
ΓΩ is obtained by context-aware sparse coding. Therefore,
salient regions are reconstructed with more accuracy owing
to the context-aware sparse coding process.

Hence, in the proposed scheme, the most important parts
are saliency segmentation and modeling the correlation net-
work of local patches. We will elaborate on them in the fol-
lowing sections.

2.2. Salient dictionary learning

The difference between general dictionary and salient dic-
tionary is the choice of training examples. Instead of using
examples distributed all over the database, we only choose
patches from the salient regions of the images in the database,
as Fig.1 shows. Naturally we get a dictionary which is espe-
cially adaptive to the structure of the salient regions.

With regard to choosing patches from the salient regions
of the images, we have to detect and segment salient regions
first. A simple but efficient approach developed in [8] is
adopted to tackle this problem. It identifies salient regions as
those regions of an image that are visually more conspicuous
by virtue of their contrast with respect to surrounding regions.
They use a contrast determination filter that operates at var-
ious scales to generate saliency maps containing ”saliency
values” per pixel.

Fig.2 shows the results of the saliency detection and seg-
mentation operation. Fig.2(b) reveals the saliency values of
the original image, which is consistent with common sense.
On the basis of the saliency map, mean-shift based segmenta-
tion is performed to crop out the salient region in Fig.2(d).

After the specific salient signals are chosen, a salient
dictionary is learned as in eq.(2). In this work, we use the
SPAMS1 Matlab package to train the general and the salient
dictionaries.

2.3. Context-aware sparse decomposition in salient re-
gions

Instead of enforcing the compatibility of overlapped regions
between neighboring patches, we investigated the context-

1http://spams-devel.gforge.inria.fr/

(a) Original (b) Saliency Map

(c) Saliency Segmentation (d) Salient Region

Fig. 2. An example of salient region segmentation.

aware sparse decomposition of patches, which means the
correlations between the structural information of the whole
patches, not only in the overlapped regions, are explored.
Correlations between the structural components of the adja-
cent patches refer to the dependencies between the dictionary
atoms which are used to decompose the patches. As men-
tioned before, regions that are salient to human eyes tend to
be highly structured and probably share similar sparse codes.
This provides a reasonable scenario to apply the context-
aware sparse decomposition.

Let γi be the sparse representation vector of the current
patch xi, and γi⋄t, t = 1, 2, ...8, be the sparse codes of xi’s
neighbor patches in 8 directions (see Fig.3, e.g., the patch in
dash line stands for direction-1 patch). Denote Si as sparsity
pattern of representation γi (Si ∈ {−1, 1}m), if γi(j) ̸= 0
(i.e., the j-th atom of γi) then Si(j) = 1, otherwise Si(j) =
−1. Si⋄t represents the sparsity pattern of the adjacent patch
in orientation t.

Fig. 3. The local neighborhood system of patch xi with a
spatial configuration of eight different orientations.

Given all the orientated neighboring sparsity patterns
{S⋄t}Tt=1, we define the context-aware energy Ec(S) by

Ec(S) = −
T∑

t=1

STW⋄tS⋄t, (4)

W⋄t captures the interaction strength between dictionary
atoms in orientation t. For instance, to the current patch xi,
W⋄t(m,n) = 0 indicates Si(m) and Si⋄t(n) tend to be inde-
pendent; W⋄t(m,n) > 0 indicates Si(m) and Si⋄t(n) tend to



be activated simultaneously; W⋄t(m,n) < 0 indicates Si(m)
and Si⋄t(n) tend to be mutually exclusive. We will introduce
how to compute W⋄t later in this section.

Meanwhile, the sparsity penalty energy Es(S) is taken
into account:

Es(S) = −ST b, (5)

where b = [b1, b2, ..., bm]T is a vector of model parameters,
and bi is associated with the dictionary atom, bi < 0 favors
Si = −1. The total energy for each sparsity pattern is the
sum of the context-aware energy and the sparsity energy, i.e.,
Etotal = Ec(S) + Es(S). The prior probability can then be
formalized using the total energy,

Pr(S) ∝ exp (−Etotal)

∝ exp

(
ST

(
T∑

t=1

W⋄tS⋄t + b

))
.

(6)

Let W̃ = [W⋄1, . . . ,W⋄J ], and S̃ =
[
(S⋄1)

T , . . . , (S⋄J)
T
]T

,
then eq.(6) can be expressed in a clearer form,

Pr(S) =
1

Z(W̃ , b)
exp

(
ST
(
W̃ S̃ + b

))
, (7)

where W̃ , b are model parameters, and Z(W̃ , b) is the func-
tion for normalization. It shows compared with conventional
sparsity priors, the proposed prior model places more empha-
sis on the dependencies of atoms in the spatial context.

For the above new prior, the model parameters includ-
ing W̃ , b, and {σ2

γ,i}mi=1 should be estimated. σ2
γ,i stands

for variance of each nonzero coefficient γi. Given X =
{xk, Sk, γk, S̃k}Kk=1 as examples sampled from the model,
we suggest using the Maximum Likelihood Estimation (MLE)
for learning the model parameters θ = [W̃ , b, {σ2

γ,i}mi=1] ∈
Θ. Mathematically, we have

θ̂ML = argmax
θ

Pr (X|θ) = argmax
θ

m∑
i=1

L(σ2
γ,i) + L(W̃ , b),

(8)
where

L(σ2
γ,i) =

1

2

K∑
k=1

fki ,

L(W̃ , b) =
1

2

K∑
k=1

(
Sk
)T (

W̃ S̃k + b
)
−K lnZ(W̃ , b),

(9)
are log-likelihood functions for the model parameters and

fki =


(
γki
)2

σ2
γ,i

+ ln(σ2
γ,i), Sk

i = 1,

0, Sk
i = −1.

(10)

For the estimation of variances, a closed-form estimator
is obtained by:

σ̂2
γ,i =

∑K
k=1 (γ

k
i )

2 · qki∑K
k=1 q

k
i

, (11)

where

qki =

{
1, Sk

i = 1,

0, Sk
i = −1.

However, ML estimation of W̃ and b is computationally
intensive due to the exponential complexity in m associated
with the partition function Z(W̃ , b). We adopted an efficient
algorithm [9] using the MPL estimation and sequential sub-
space optimization (SESOP) method to tackle the problem.

2.4. Image Reconstruction

The prior model proposed in the previous subsection is de-
fined in a patch-wise scheme. It is enforced over the local
neighborhood range of each patch. In fact, the neighboring
sparsity patterns S̃ are always unknown when addressing the
sparsity pattern recovery for one single patch. Meanwhile,
when dealing with an arbitrary size image, it is necessary to
extend the local prior to a global one as in [10, 11] and we
incorporate the context-aware sparsity prior into the MRFs
framework.

For an input degraded image X of arbitrary size, we first
break it into overlapped small patches {xk}Kk=1. Each patch
xk has a corresponding high-quality patch yk, and the ”true”
sparsity pattern of yk is denoted as Sk. S = {Sk}Kk=1 rep-
resents the whole set of sparsity patterns. We introduce an
8-connected MRFs to model the relationships among the de-
graded patches and their corresponding high-quality patches.
Based on the MRFs model, we define three types of poten-
tial functions corresponding to the likelihood term ϕ(Sk, xk),
sparsity term η(Sk) and context-aware term ψ(Sk, Sp),

ϕ(Sk, xk) ∝ Pr(xk|Sk),

η(Sk) ∝ exp
(
(Sk)T b

)
,

ψ(Sk, Sp) ∝ exp
(
(Sk)TW⋄tS

k
⋄t
)
,

(12)

which use the fact that patch yp is adjacent to yk in the t-th
orientation. Once the potential functions are determined, the
MRFs with homogeneous potentials could be written as

Pr(S, X) ∝
∏
k

η(Sk)ϕ(Sk, xk)
∏
k,p

ψ(Sk, Sp). (13)

ϕ(Sk, xk) corresponds to the likelihood probability Pr(xk).
Therefore, the complete set of sparsity pattern S in the MRFs
can be optimally estimated by maximizing the joint probabil-
ity of MRFs,

maxPr(S, X) = max
K∑

k=1

(
ln Pr

(
xk|Sk

)
+ lnPr

(
Sk
))
.

(14)
Since the parameters are calculated, one way to compute

the global optimal configuration for the MRFs model in (14)
is to provide a set of possible candidates for each node, then



approximately solve it by the Belief Propagation algorithm.
However, since the number of possible configurations of each
node is exponential to the number of the dictionary atoms
(i.e., there are 2m possible candidates for S), it is compu-
tationally intractable in practice. Thus we present an approxi-
mated numerical solution that iteratively recovers the sparsity
pattern of each patch, as in the Gauss-Seidel iterative method.

In the proposed algorithm, all the patches are processed
in raster-scan order in an image, i.e., from left to right and
top to bottom. When processing the current center patch, all
sparsity patterns of the neighboring patches S̃ are utilizing
the latest updated value and kept fixed during the recovery of
sparsity pattern for center patch. Due to the overlapping of
extracted patches, the updated sparsity pattern of the current
patch is immediately used in the processing of next neighbor-
ing patch. The procedure is performed repeatedly to propa-
gate the contextual information among all the nodes.

The above simplification for solving the whole set of spar-
sity patterns of the MRFs can be viewed as a block-coordinate
method, in which when updating one single sparsity pattern,
the others are known and fixed. We adopt a greedy algorithm
as an approximate MAP estimation for computing sparsity
patterns. The greedy algorithm starts with an initialization
with Si = −1,∀i, and then iteratively changes the value of
entry Si to 1 that makes the posterior probability of S with
the biggest growth comparing to all other candidates. The it-
eration stops until the the posterior probability reaches a local
optimal value.

Algorithm 1: MRF-based Image Recovery Algorithm

Input: Noisy observations {xk}Kk=1, dictionary D̃,
noise variance σ2, model parameters
θ =

[
W̃ , b, υ = {σ2

γ,i}mi=1

]
, initialization S(0),

maxPass.
Output: Recovery of HR image y.
p = 0;
while p < maxPass do

p = p+ 1;
for every patch xk in raster-scan order do

Collect the sparsity patterns of neighboring
patches, S̃k;

end
end
return Ŝ = {Ŝk}Kk=1.
γ̂S = argmaxγs Pr(γs|x, Ŝ) = Q−1

S D̃T
Sx,

y = D̃S γ̂S = D̃SQ
−1
S D̃T

Sx.

With sparsity patterns known, we can estimate the sparse
codes and reconstruct the HR image as follows:

γ̂S = argmax
γs

Pr(γs|y, Ŝ) = Q−1
S D̃T

Sx,

y = D̃S γ̂S = D̃SQ
−1
S D̃T

Sx.
(15)

where the nonzero coefficients in γ are denoted as γS , and the
corresponding atoms in D̃ which participate in the representa-
tion γS are grouped into a sub-dictionary denoted by D̃S . ΣS

is a k× k diagonal matrix in which the diagonal elements are
the corresponding variances σ2

γ,i of the nonzero coefficients
γi, and k is the total number of the nonzero coefficients in γ.
QS = D̃T

S D̃S + σ2Σ−1
S .

The pseudocode of the MRF-based image recovery algo-
rithm is summarized in Algorithm 1.

3. EXPERIMENTAL RESULTS

To evaluate the efficiency of the proposed method, we conduct
experiments of 3× super resolution on several test sets. The
LR input images are generated from the original HR images
by downsampling with bicubic method by the scaling factor,
and contaminated by additive Gaussian noise with standard
deviation σn = 1.

Fig. 4. The local neighborhood system of patch xi with a
spatial configuration of eight different orientations.

Table 1. PSNR (dB) Comparison of Different Methods of 3×
SR on Test Images.

Images Bicubic ScSR Salient OMP Proposed
Liberty 23.03 23.50 23.57 23.60
Relic 24.12 24.58 24.69 24.68
Palace 23.34 23.81 23.89 23.92
Horse 27.61 27.92 28.11 28.13

Colosseum 22.21 22.70 22.79 22.81
Tower 29.52 29.95 30.08 30.09

Average 24.97 25.41 25.52 25.54

We test the proposed method on six image sets, Liberty,
Relic, Palace, Horse, Colosseum, and Tower, all collected
from the internet(released on our website2). Half of them
as training examples, the rest are used as test images (see
Fig.4). For each database, a general dictionary and a salient
dictionary are learned separately. The LR patch size is 3 × 3
and therefore HR patch size is 9 × 9, and the overlaps be-
tween patches are [2, 2] and [6, 6] for LR and HR patches,

2http://www.icst.pku.edu.cn/course/icb/SalientSR.html



(a) Original (b) Part of Original

(c) Bicubic (d) ScSR

(e) Salient OMP (f) Proposed

Fig. 5. Comparison of different methods on image Tower.

respectively. We compare our method with the baseline bicu-
bic method, ScSR [3], and OMP with salient dictionary (see
Table.1). ScSR is one of the state-of-the-art SR algorithms,
and the proposed method shows 0.1 0.2dB PSNR gain over
it. Then, for the integrity of the whole verification process,
we incorporate saliency into the traditional OMP-based SR
method to develop the saliency OMP to demonstrate the ef-
fectiveness of saliency segmentation.

At the same time, we show subjective results on test set
Tower. Fig.4 shows zoomed comparison of the highlighted
part in the original image by different methods. Compared
with ScSR, Fig.4(e) and (f) significantly reduce artifacts
along the tower edges thanks to the salient dictionary. Mean-
while, owing to the context-aware sparse decomposition,
more structural information is recovered (see details of the
tower columns, best view on screen).

4. CONCLUSION

In this work, based on sparse representation SR framework,
we focus on how to make the most of the underlying structural
information in images. Considering the property of salient re-
gions in images, we propose a saliency based dictionary learn-
ing pattern. Another contribution of this work is we incorpo-
rate context-aware sparse decomposition to model dependen-

cies between dictionary atoms of adjacent patches. Experi-
mental results show the proposed method outperforms other
methods in both objective and subjective quality.
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